

Electroweak Physics Prospects for CDF in Run II

Eric James
University of Michigan
CDF Collaboration

Run II EWK Physics Goals

- Precision measurements of Standard Model electroweak parameters
 - M_W , M_{top} , Γ_W , and $\sin^2 \theta_W^{eff}$ indirectly constrain M_h within the Standard Model framework and are sensitive to new physics above the EWK scale.
- Precision tests of Standard Model Predictions
 - Measurements of W and Z production cross sections and W charge asymmetry test QCD.
 - Diboson production cross sections measurements probe EWK couplings and are also sensitive to new physics.

Indirect Higgs Searches

Run I:

$$M_w = 80.456 \pm 0.059 \text{ GeV/c}^2$$

$$M_{top} = 174.3 \pm 5.1 \text{ GeV/}c^2$$

Run II (2 fb⁻¹):

$$M_W = \pm 0.040 \text{ GeV/}c^2$$

$$M_{top} = \pm 2-3 \text{ GeV/c}^2$$

W, Z Production Cross Sections

- Run II (2002)
 - vs = 1.96 TeV
 - $\int \pounds \cdot dt = 10-16 \text{ pb}^{-1}$
- $\sigma \cdot B = (N_{obs} N_{bg}) / A \epsilon \int \pounds \cdot dt$
 - $N_{obs} = Number of events observed$
 - N_{bg} = Estimated number of background events
 - A = Kinematic and geometrical acceptance
 - ε = Total efficiency
 - $\int \pounds \cdot dt = Integrated luminosity$

W Event Selection

$W \rightarrow e \nu$	$W \rightarrow \mu \nu$
$ \eta^e <1.0$	$ \eta^{\mu} < 0.6$
$E_T^e > 25 \text{ GeV}$	$P_T^{\mu} > 20 \text{ GeV}$
$E_T^{\nu} > 25 \text{ GeV}$	$E_T^{\nu} > 20 \text{ GeV}$
$E_{\rm T}^{\rm ISO} < 4~{\rm GeV}$	$E_T^{ISO} < 2 \text{ GeV}$

M_T Distributions

entries per 3 GeV CDF Run II 16 pb⁻¹ preliminary 300 all contributions $200 - \boxed{} W \rightarrow \mu V$ \square $Z \rightarrow \mu\mu$ $100 - W \rightarrow \tau V$ - IIII QCD 20 40 60 100 transverse mass (GeV)

 $W \rightarrow e \nu$ (5547 events)

 $W \rightarrow \mu \nu$ (4561 events)

Recoil Energy (Electron Channel)

Recoil Energy (Muon Channel)

Missing E_T Distributions

$$W \rightarrow e \nu$$

$$W \rightarrow \mu \nu$$

Cross Section Input Parameters

	$W \rightarrow e \nu$	$W \rightarrow \mu \nu$
N _{obs}	5547	4561
N_{bg}	409 ± 85	569 ± 63
A (%)	23.4 ± 0.9	14.2 ± 0.4
ε (%)	81.1 ± 1.8	63.2 ± 3.8
∫£·dt (pb-1)	10.4 ± 1.0	16.5 ± 1.6

CDF Run II Preliminary

Run II W Cross Sections

CDF Run II Preliminary

- $\sigma \cdot B (W \rightarrow ev) =$ 2.60 ± 0.03 (stat) ± 0.13 (sys) ± 0.26 (lum) nb
- $\sigma \cdot B (W \to \mu \nu) =$ 2.70 ± 0.04 (stat) ± 0.19 (sys) ± 0.27 (lum) nb
- CDF Run I (W \rightarrow eV): $\sigma \cdot B = 2.49 \pm 0.12 \text{ nb } (\sqrt{s} = 1.8 \text{ TeV})$
- NNLO Theory (W. Stirling): $\sigma \cdot B = 2.50 \text{ nb} (\sqrt{s} = 1.8 \text{ TeV})$ $\sigma \cdot B = 2.73 \text{ nb} (\sqrt{s} = 1.96 \text{ TeV})$

Reconstructed Z Boson Signals

 $Z \rightarrow e e$

$$Z \rightarrow \mu \mu$$

R_u Measurement

$$R_{\mu} = \frac{\sigma(p\overline{p} \rightarrow W) \Gamma(W \rightarrow \mu\nu) \Gamma(Z)}{\sigma(p\overline{p} \rightarrow Z) \Gamma(Z \rightarrow \mu\mu) \Gamma(W)} = \frac{N_{W} \epsilon_{Z} A_{Z}}{N_{Z} \epsilon_{W} A_{W}}$$

N_{W}	3992 ± 93
N_{Z}	53.2 ± 8.0
$\epsilon_{ m Z}/\epsilon_{ m W}$	0.884 ± 0.053
A_Z/A_W	0.2060 ± 0.0048

$$R_{\mu} = 13.66 \pm 1.94 \text{ (stat)} \pm 1.16 \text{ (sys)}$$

$$\Gamma_{\rm W} = 1.67 \pm 0.24 \text{ (stat)} \pm 0.14 \text{ (sys)}$$

 $\pm 0.01 \text{ (theory)}$

CDF Run II Preliminary

Future Prospects

- Run IIA is defined as 2 fb⁻¹ collected during a 2-3 year period.
- CDF detector upgrades provide increased acceptance for leptons out to $|\eta| < 2$.
- The rise in √s from 1.8 TeV to 1.96 TeV increases the W and Z cross sections ~ 10%.

Sample	Run I	Run II
$W \rightarrow 1\nu$	77K	2300K
$Z \rightarrow 11$	10K	202K

Estimated Event Yields

Electrons in Plug

Silicon Tracking at large η

$$\Delta \phi = \phi_{\rm s} - \phi_{\rm o} \propto 1/P_{\rm T}$$

$$\Delta \phi_{\rm exp} \propto 1/E_{\rm T}$$

$$\Delta \phi / \Delta \phi_{\rm exp} \propto E / P$$

M_w Measurement

- W mass is extracted from a fit to M_T^W since CDF does not measure $p_z^{\ \nu}$.
- Many of the systematic errors such as the scale & resolution of the lepton energy/momentum and the recoil model scale down with luminosity $(Z \rightarrow 11)$.
- However, P_T^{ν} resolution does depend on the average number of interactions per crossing.
- Based on Run I experience, expect $\delta M_W = \pm 40 \text{ MeV}$.

Measurement of A_{FB}

- Direct probe of relative strengths of vector and axial couplings over corresponding Q² range.
- Extract $\sin^2\theta_W^{eff}$ from A_{FB} measured for lepton pairs in the vicinity of the z-pole.
- Search for non-SM heavy neutral gauge bosons using high mass pairs.

$$A_{FB} = (N_F - N_B) / (N_F + N_B)$$

$$N_F = N_{evt} \text{ with } \cos(\theta^*) > 0$$

$$N_B = N_{evt} \text{ with } \cos(\theta^*) < 0$$

Also

- Study tri-linear couplings of W, Z, and γ to test Standard Model and search for anomalous couplings (new physics).
- W charge asymmetry measurements provide an important constraint on parton distribution functions. Increased lepton coverage at high η in Run II will allow these measurements to be extended into the most interesting range.

Conclusions

- With 2 fb⁻¹ in Run II, CDF will be have the opportunity to further constrain the values of important EWK Standard Model parameters.
- In conjunction with direct searches for the Higgs boson, these results will provide an increasingly stringent test of the Standard Model.
- Initial measurements of W and Z production cross sections indicate good understanding of detector.